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Abstract. Some algebraic strucuues in elliptic solutions of the Yang-Baxter equations are 
investigated. We prove the crossing symmetry in Belavin’s model as well win the AA!1 face 
model, and we construct a new family of Loperators For Belavin’s R-matrix as an application. 

1.  introduction 

Recently much progress has been made in the theory~of two-dimensional solvable statistical 
lattice models. Here we shall investigate some algebraic structures in elliptic solutions of 
the Yang-Baxter equations (YBE).~In particular, we demonstrate the crossing symmetry in 
Belavin’s model [l] as well as in Jimbo etal face model 121, and we constmct a new 
family of L-operators for Belavin’s model as an application. 

Bazhanov and Stroganov [3] showed that the chual Potts model, which is a solution of 
t he~mE or the star-triangle relation whose spectral parameter l i e  in a high genus algebraic 
curve [4,5], is a ‘descendent’ of the 6-vertex model which is nothing hut the R - m h  
associated to U, ($+ That is, they derived the chiral Potts model as the intertwiner of cyclic 
L-opaJors or, equivalently, the intertwiner of the two-fold tensor of cyclic representations 
of U,(sln). Motivated by their result,~in our previous paper [6] we showed that Kashiware 
Miwa’s elliptic solution (the so-called broken ZN symmetric solution [7]) is a descendent 
of Baxter’s 8-vertex’model 181, i.e. if we take Sklyanin’s cyclic L-operator for the 8-vertex 
model we obtain Kashiwara-Miwa’s model as the intertwiner for the L-operators. Together 
with this derivation, in [9] we further succeeded in relating the crossing symmetry of 
Kashiwara-Miwa’s model with a certain duality property of the L-operators. 

To generalize this story for the n-state elliptic model of Belavin, one immediately needs 
a cyclic L-operator for the model and its construction is one of ow ohj$ves here. We are 
inspired by an idea in Bazhanov et al [lo]. They considered the U,(sln) generalization in 
[31 hy means of ‘intertwining vectors’ or ‘factorized L-operators [ll]’. Intertwining vectors 
were originally introduced in [12] to introduce face models via vertex models. Hence by 
definition they relate a vertex model and a certain face model, and using this relationship 
[lo] observed that a simple combination of intertwining vectors provides an Loperator. 
Intertwining vectors between Belavin’s model and the A!L, face model are given in [13] 
and they are, sq to speak, ‘outgoing’ intertwining vectors. What we need IO construct L- 
operators are their ‘dual‘ or ‘incoming’ intertwining vectors and o u ~  method for constructing 
them is as follows. We first observe the crossing symmetry of the models, which is nothiig 
but the incomingloutgoing duality (sections 3 and 4). and then we obtain the incoming 
intertwining vectors by fusing [2,14,15] the original intertwining vectors (section 5). ne 
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resulting Loperators (section 6) act on C" 8 (space of functions on the weight space h* of 
sin), and of letting the deformation parameter q = ea of Belavin's model be a root of unity 
invariant subspaces arise and we can obtain the desired cyclic Loperators. In addition to 
this cyclic one we can also find other invariant subspaces [I61 so that we can generalize 
the analogue of Sklyanin's series of Loperators [17] for Baxter's 8-vertex model to the 
Belavin model. 

As is well known, up to a certain transformation the trigonometric limit of Belavin's 
model gives the R-matrix of U&) in the vector representation [NI. What we have 
observed here should be regarded as part of the theory of the 'elliptic' version of quantum 
groups [14,19,20] and we have formulated the model keeping this in mind. We hope that 
this paper will give some insight into the nature of the theory. 

2. Review 

2.1. Belavin's vertex model [I] 
For n > 1 let Cn = @k&mod,,ZC.Zk and let g ,  h E GL(Cn) to be gek := e'exp;?itik/n, 
heK := eh+' so that g h  = hg exp k i l n .  Let h,  7 E C, h # 0, Ims z 0. Belavin's R-matxix 
is characterized as the unique solution of the following five conditions. 

(i) R(u) is a holomorphic End@'' @ C")-valued function in U 

(iii) R(u + 1) = ( g , @  l)-'R(n)(g 8 1) x (-1) 

, .  
(ii) R(u) = ( x  8 x)R(u)(x 8 x)-' 

(iv) R(u + 7 )  = (h 8 l)R(u)(h @I 1)-' x (-expki(u + (fi /n) + $7))-' 

( v ) ' R ( O ) = P : x @ y ~ y @ x . .  ~ 

We also have the following formula for R(u) [21]: 

for x = g, h 
. (1) 

R(u)e' @ e j  = z e '  @I e j . R ( ~ ) ? ~ ,  
P, j' 

Here 

and 

e(j)(,) := e l , z - j , n , l ( ~  + 4, nr). 

Then the YBE of the vertex type 

RZ(uz - u ~ ) R ' ~ ( u I  - U ~ ) R " ( U I  - uz)= R"(U1 - uz)RL3(u1 - u3)RU(uz - u g )  

holds on VI 8 Vz @ V3, where V, are copies of C" and R'j acts on ith and jth spaces. 
For the latter purpose we will reformulate this solution as follows: For each U E C let 

V(0.) be the copy of C" and write the R-mahix R(u - v )  acting on V ( 0 , )  8 V(0,) as 

(3) 
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where P is the permutation V(0.) @ V(0,)  + Rn-o,,. We also put k 5 - b  := 
V ( 0 , )  @ V(0.). Then YBE (3) reads as follows 

(dO".O. @ 1)(1 @ p . o ~ ) ( ~ o n . o .  @ 1) =- (1 @ $","")(1 8 p . o w ) ( j p " . o ~  @ 1) 

: V ( 0 " )  @ V ( 0 " )  @ V(0,) --f V(0,)  @ V(0" )  @ V(0,). (4) 

Remark 1. The notation 0 stands for the Young diagram consisting of one box. If we 
consider the 'algebra of Loperators' for Belavin's R-matrix then the notation 0, can be 
justified as its 'vector representation with the spectral parameter U'. 

2.2. face model 1131 

Let ~ ; ( i  = 1, . . . , n) be the orthonomal basis of an n-dimensional vector space with the 
inner product (, ) and put h* := @-Span of (ci - ci+l(i = 1 , .  . . , n - 1)) so that we can 
identify h* and the weight space of the complex Lie algebra sln in a usual wa Let 
-: U 2  --f h" be the orthogonal projection. Then the Boltzm,ann weight of the A S  face 
model corresponding to the vector representation 0 is given by the following. 

and, for the other configuration of A,  p ,  .id and v, 

w h U v :=o [ :. 1 
where Aij  := (A + p ,  E, - 6). p := c = , ( n  - j ) Z j  is the half sum of positive roots and 

h(u) : = Oi/z,I(u + 4. t) 
m 

= iq 118 (z 112 - z-1/2 ) n(1- q" - z q m ) ( l -  z-'qm) 
m=l 

(5) 

where q := e x p k i r ,  z := exph iu .  The function h satisfies, 

h(u + 1) = -h(u) h(u + t )  = -h(u) exp2ni[-u - 5/21 (6) 

and h(u) = 0 for U E Z + tZ. 
transfer matrix)', the following vector space is in order. 

@ : p = A + &  forsomei 
otherwise. 

To formulate the weight W as a linear operator or a 'face operator (an elementary 
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We denote by e; the basis of the one-dimensional space Pfo when p = A + 4 for some 
i ,  and otherwise we set e? = 0. For each U E C we consider the copy P& of Pno and 
define 

Ph,...o., := %"$ @ p;o, @ ' ' ' @ P;&!o"&-, 
PI.....PE-I 

PO.,-O, := @ . L , V ~ ~ O ~ ~ . . . ~ ~ ~ .  

This is the space of 'admissible paths' in 121. For e; E P& and e; E Pinv we put 

thereby defining the face operator 

2.3. Intertwining vectors 1131 
Put 

and define the linear map 

4;n" :Pro" --f V(0.) 

@;fD,e," := Ce'($fn,", . ) j .  
j 

by 

Then the @& 'intertwine' Belavin's vertex model and the A:?l face model, namely 

This formula is remarkable because of its similarity to the monodoromy property of the 
n-point function in the q-conformal field theory [22] and between Pasquire's formulation 
of the face models [23]. 

The quantity [(@&u)j]7=, regarded as an n-vector is called the intermining vector. 
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3. Crossing symmetry in the vertex models 

where~the spectral parameters are specialized as 

(U'.. . . , U k )  =i (U, U + f i , .  . . , U 4- (k - I ) % )  (10) 

so that the rank of the operator ?r degenerates. By virtue of YE% (5) the factors in (9) can 
be arranged in various ways by 'braid manipulation' and this is the key remark in deriving 
the formula in what follows. We denote the image of xlx in V(O,,+(k-lp) @ .  . . @  V(D.) 
as V ( 1 t )  and then it turns out that V(1:) = A"(@") for the generic value of f i .  Put 

I v ( K ) ~ v ( L )  
i K , L  .- .--d O.,Q-I)X@...@O.,O,+" 

where 

K = 1; L= I t  

is the shorthand notation. Then the DE for io**o" (5) guarantees that this 'fused' operator 
preserves the image of x 
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3.2. Crossing symmetry 

Let us denote the special diagram 1" as top and put 

(1;)* := ';&. 
Then since n,, = i K * K * ( ~ ~  @ JCK.) for each K = 1:. we can define a pairing 

(, ) : V(K) @ V(K*) -+ V(t0P") -+ @. (13) 

as the composition of dKtK' and the identification map Itop,) H 1, where Itop,) is a fixed 
basis of the onedimensional space V(top,). 

For generic E this pairing turns out to be non-degenarate so that we can and do identify 
V(K)* and V(K*), where V(K)* stands for the dual space of V(K). Fix K = 1: and 
L = 1:. We take a basis [e']' in V(K) and its dual basis (with respect to (, )) [e;]' in 
V(K*), and do the same for L. We define the matrix elements of by 

etc. 

Proposition I. 
following. 

Let K = l i ,  L = 1: and top = 1". Then under notation (12) we have the 

(i) There is a scalar f (K ,L)  which is non-zero for generic U, U such that 

f(K.L) .~~v(K)@vL?) .  (14) 

(15) 

i L , K $ , L  = 

(U) We have 

i K . l a p s  = g ( K ,  top,) . P P P " . L  = g(top,,L). P 

where P : V(K) @ V(top,) -+ V(top,) @ V ( K )  is the permutation of the components and 
g ( K ,  top,), g(top,,L) are scalars which are non-zero for generic U, U. 

(iii) The following crossing symmetry holds: 

Proof. (i) follows from the first inversion formula d o " ~ u ~ ~ u ~ * u u  = scalar for Belavin's 
original R-matrix. To show (ii), note that the operator JCK commutes with the k-fold tensor 
product representation of the Heisenberg group (g, h) (1). Since dimV(top,) = 1, the 
representation restricted on V(top,) is only by scalar multiplication. Together with the 
characterization (1) of io-"", this impties that (1 @ x) iKJoP"(x- '  @ 1) = i K J o p "  for 
x E (g. h )  as desired. The fact that g ( K ,  top,) # 0 follows in generic fiom the explicit 
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calculation (appendix). To prove (iii), we use (i) and an elementary braid manipulation to 
set 

. .  
kL'"'?(1L 8 X ) ( k K ' L  @ 1K.)  = (1K' 8 dL'K)(ki'K* @ 1 K ) ( ] L  @ kK3K')(kK'L @ 1 ~ 0 )  

= (X @ IL)(IX @ E'sK*) , ~ ( K , L )  

: V(K) 8 V(L) @ V(K') + V(top,) 8 V(L) 

where i~ = kK.K' : V ( K ) @  V(K*) -+ V(top,). Rewriting this in terms of matrix elements 
we obtain (16). Similarly we get (17) from the identity 

dlOP.,L (X 8 1 L ) ( l K  8 E L I K * )  (1L 8 X ) ( d K S L  @ 1K') f(L,K*). 

0 

Corollary 1. Comparing (16) and (17), we have 

f (K.L)  - g(top,,Q 
g(L, tOP&)~ f(L K*)  

- 

COFOlkZrY 2.  Using (16) twice, we have 

We can also define a pairing by using Remark 2. For K = 1: Write K"' := lu+(k-np. 
~ K " . K ,  

n-k 

( 3  )' : v(K*) @ v(K) V(toPu+(k-n)A) (19) 

which is also non-degemte for genekf i  so that we can identify V(K)* and V ( K ' ) .  
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where the spectral parameters are specialized as before (10): (U,, . . . , uk) = (U, . . . , U + 
(k - 1)R). We denote the image of llr in Pmdt-,,,..q (respectively P~ow+~-,,...ou) as PI; 
(respectively P:,:), or PK (respectively P&) using the shorthand from the previous section 
K = 1:. We also write P& := $*P& @ Ph, Pm := $,,P&. It turns out that for 
K = 1: and generic value of R the dimension of the space P& is given by 

d imPh=l{ ( j l ,  ..., j&l< j , .<. . .< j k < n , ~ , + . . . + E ~ ~ = u - h } l  

which is equal to the multiplicity of the weight U - h of the GL(C")-module A ~ ( C ~ ) .  In 
particular, for top = 1" we have dimPitvu = &,". 

The fused weight for X = 1:. L = 1: is defined by 

@K,L := @ ~ ~ + ( ~ - ~ Y ~ ~ ~ ~ O ~ . O ~ + ~ . ~ ~ ~ ~ ~ . O , ~ ~  . pm + p ,  KL. 

and they satisfy 

(@L,M @ 1)(1 €3 @ K . M ) ( @ K , L @  1) = (1 €3 r i r K , L ) ( w f  8 1)(1 8 rirLJ4). (21) 

Fix a base Itop,,,) E P;mpx for each k and U. We can define the pairing 

(,) : PK @PK* + Ptvm + (22) 

as the composition of @K*K' and the identification map [top ) H 1. Suppose 7'2 # 0. 

identify (P$)* and Ph.. Take basis {e;)= of P* and its dual basis (with respect to (, )) 
[e;:)a of PiK. and define the matrix element of W as follows. 

Then for generic A this pairing is non-degenarate between PhK A$ and P k .  so that we can 

M[ 

Proposition 2. Let K,L are as in proposition 1 and let f ( K ,  L) be the scalar in (14). 
(i) We have 

dtKnL = f ( K ,  L) . id. 

(i) For each h and f i  there exists a scalar Gf(K, top,) (respectively Gr(top,, L)) which 
is non-zero for generic U, U and satisfies 

eKirK."(b @ Itop,,,)) = [topA,,) @ b .  G f ( K ,  top,) 

(respectively$mPx.L(ItopA,u) @ b) = b @ Itop,,,)Gf(top,,L)) 

for any b E P& (respectively P&). 
(iii) The crossing symmetry is given by 
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Proof. Proof of (i) is similar to the vertex case. (ii) is trivial when k = 1 because the 
space PfnE is, at most, one-dimensional, and then the general case follows. The fact that 
G f ( K ,  top,) # 0 for generic U - U follows from calculation (lemma 1 and the appendix). 
To prove (iii), as in the vertex case we use (i) and an elementaty braid manipulation to 
obtain 

~ ~ " p . ( l @ n ) ( . C i r K ~ L @ l )  = ( r I @ l ) ( I @ W .  - L,K* ) . f ( K , L )  

: , PK @ QL @ PK. + P.p. 8 PL 

Here I3 = dtR,". Rewriting this in terms of matrix elements we obtain (23). Similarly we 
get (24). 

Corollary 3. 

Corollary 4. 

Remark 3. As in the vertex case we can deEne a non-degenerate pairing 

-+a2 i 
( 3  )' : ?$.. @ P& + P*rap,@-"~ 

by using kK"tK where K"' is the same as before (19). 

5. The incoming intertwining vectors 

Fusion of the intertwining vector was treated in [15] with the generalization of the vertex- 
face correspondence (8). Here we will review them in our formalism so that we can 
observe the algebraic struture directly. Let K = 1t.L = 1 ; .  top = 1" as before. Consider 
the operator 

PI 
@ . ' ' @ 4;k-,nsk 4k@"+"fi := @PIIP2.-..Pk-14m", ~@4& PI 

Pl 
: p;b,,O,,...nn, = @ P ! , P Y , P ~ - I ~ A ' & ,  @pEn,  @ " ' @ p ; ~ - ~ n x k  
-+ V @ , , )  @ V(Q2) @'. .@ v(n,) 

then from the intertwining property (8) we have 

~14J:n&n~+pn"+(&,D = qJ;n"+@-,D...n"+*n" n I t .  



3220 K Hasegawa 

This is the fused5htertwining vector. Let 

prf$ : @,.PL @ PiJK -+ P2 c3 PkK 
denotes the projection and put 

CL 
tirK,L [ h ~, U ]  :=PI$" ' !@fi*L[F&@FL : P$c3 Ph + Pr; c3 ?LCK. 

Then the generalized vertex-face correspondence or the intertwining property [15] can be 
stated as follows 

Here both sides are the operators P& @ PiL + V(L) €3 V ( K ) .  

5.1. The incoming intertwining vectors' 

The fused intertwining vectors (27) may be called outgoing intertwining vectors because 
the space V ( K )  appears there as the output of these quantities. In contrast to this, what we 
should like to call 'incoming' intertwining vectors are the quantities 

4;L : V(L) --f P& 
that satisfy 

and we are now in the position to consfmct them. 
First we substitute k by n - k and I by n - 1 in (28), 

then we have 

We use the crossing symmetries (18), (25) in corollaries 2, 4 to get 

(30) 
We need the following lemma. 
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&"a 1. Let (@;topm) E C! be the coefficient in the formula 

@;top" ItoP,,,) = 'ltoP")(@;top") 

where [top,,,) E P,topu'(respectively Itop,) E V(top,)) denotes a fixed basis of the one- 
dimensional space.  then^ we have the formula 

Proof. Recall the formula (28) for 1 = n, 

Since~dmP&,pu = &,, the summand on the right-hand side is zero unless p' = A. Then 
the lemma follows as we take thematrix elements of both sides with using proposition 2(ii). 

0 

Applying (31) to (30) we have 

C(iK+ $;' . (@,"X*) I n  )Jb 
I J  

for each basis element e' E V(K), where K *  := 1:;L (12). Then they satisfy 

where both sides are the operators V ( K )  €4 V(L)  + P$@ PiK. 
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Remark. In the above definition (32) we used the dual basis for ( V ( K ) ,  V(K*)) with 
respect to the pairing (13) as well as those for (PfK,PiK.) with respect to (22). In 
defining these pairings we fixed the basis elements in V(top,) and P&,u,respectively. but 
it can be checked easily that the quantity (32) does not depend on the choice of these basis. 
0 

By construction, the incoming vectors above and the outgoing ones obey the following 
duality relations [lo]. 

Proposition 3. Assume that PfK # 0. Then we have 

@ f K @ r ~  = &,,idpm : P ~ K  + V ( K )  + ‘pl”~ 

x@&q5fK = idV(m : V(K)  -+ ’ P ~ K  + V ( K ) .  

(33) 

(34) 
A 

Proof. From the definition of the fused intertwining vector and the generalized vertex-face 
correspondence (28) we have 

i K . K * ( @ &  vK @ @ A  p K  .) - - @ A  mp. V S K ’  : PrK @ PkK. -+ V(tOp,). 

~ ( @ ~ K K ) l . O ( @ ~ K * ) I . b  = &,A&,b(@mp)- A 

Evaluating this identity with the dual basis we have 

I 

Here the assumption PfK # 0 is necessary, otherwise both sides will be 0. Together with 
0 

Remark 5. To get the incoming intertwining vectors as above, we can take the pairings 
0’ (19),(26) instead of () (13),(22) in the very beginning of the story. Then the 
whole construction works in the same way, but the resulting intertwining vectors, say 
@‘fK, satisfy the duality relations (33),(34) in a slightly different form: @‘fK@& = 

the definition (32), this implies (33) and (34). 

&.ddP:K, Cp@f~@’fK = idv(m. 0 

6. The L-operator 

We define the vector space 

v := rIp&.@8@ 

with 6”. the ‘delta function supported at p E h”’, as its basis. 

Theorem 2. For each A, p E h* put 

iw)f := @fK@fK : V ( K )  + P& + V ( K )  

for K = If and define the operator 

i ( K )  : V(K) @ V + V 8 V ( K )  

(35) 
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i ( K ) ( u  @ 6’) := 

(i(~) @ I)(I @ i ( ~ ) ) ( i ~ . L  @ i) = (1 @ iy)( i (~)  cz, i)(i @ i (~ ) )  

VtK) @ V ( L )  @V + V @  V(L) @ V W ) .  

3223 

by 
6). @ i ( K ) f ( u )  

A 

for any U E V ( K )  and p E h*.’ Then this operator is well defined and satisfies the following. 

where K =.li, L = 1: and both sides are operators 

In particular, putting k = 1 = 1 the operator i(0,) gives an Goperator for Belavin’s 

Proof. Remark that for each A, i ( K ) i  = 0 for all but finite p, which imply that the 
operator i ( K )  is well defined. 

Then by the intertwining properties (28) (29) we have the following for each A and U, 

R-mtrix $“a. 

= i K , L  E(@& @ @ ; , J ( @ f K  @ b;!) 

= k K . L X i ( K ) f  @ i ( L ) i , .  

P’ 

= zKsL E(&& P’ P‘K @ (@;rL$;F) 

” 

P’ 

This identity of operators V ( K )  @ V(L)  + V(L)  @ V ( K )  implies the assertion. 0 

Remark 6. Recall the definition V(1:) := z l r (V(OU)  @ . . . @ V ( O ~ + W I ) ) ,  where V ( 0 . )  
is just a copy of c!” (section 3).  his implies V ( I ~ + J  z ~~(1:). Similarly P’ 2 P,$. AI!+x 
So identify these spaces and denote them as V(lk), P,”,, respectively. Then we have the 
operator 

i(l;+z, 1:): :=$J’* qp : V(P) E V ( 1 i )  + Ph”tl EPp.”ll:+x + v(1;,) E V ( P )  
A L + ,  

and we can define~i(l:,, 1:) by 

i(l:+,. IZ)(V @ 6’) := Z6! @ i(l:+x, l:)f(v). (36) 

Adapting the above identification of spaces we can say that the operators i l l ,  1: and klk*lL 
depend only on their deference U - U. Then we apply the above proof and get 

A 

( i (L+, ,L)@ l ) ( I @ i ( K + , , K ) ) ( d K , L @  1) = ( 1 @ d K , L ) ( I @ i ( K + ~ , K ) ) ( i ( L + ~ , L )  @ 1) 
whereK =lk,,b;,= 1,+%,L= k l ~ , L + , = l ~ + x .  
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6. I. Discussion 
The L-operator given in this section defines a representation of the algebra of L-operators 
[20] on V (35). This is a large space but contains some series of sub/quotient representations. 

First, let Thl be the com lex vector space spanned by theta functions of level I E 7$0 on 
the weight space h* and Th, " be its subspace consisting of the Weyl group (= the symmetric 
group S,) invariants. The space T h p  is spanned by the level 1 characters for the affine Lie 
algebra A:?, [24]. Assume x = 1A in (36). Then we can restrict (the contragradient of) 
our representation to the space Thp .  This generalizes series (a) in Sklyanin's work [17]. 
We conjecture that this representation is equivalent to the fused representation on degree 1 
symmetric tensors which was given by 1141 and studied by [25]. Here equivalent means that 
after a suitable choice of bases the matrix element of our Loperator and the corresponding 
one for the fused L-operators are the same. When 1 = 1 this equivalence can be proved by 
examining the transformation rules l i e  (1) of the matrix elements in the problem [16]. 

Second, letting A to be a rational number we get 'cyclic' representations as the quotient. 
This generalizes the series (b) in [17], and suggests the generalization of Kashiwara-Miwa's 
solution of the star-triangle equation. 

The author would like to report these important aspects of our L-operator elsewhere. 

f .  
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Appendix. Some formulae 

Here we will give the formula for three important factors appearing in this article. 

Formuln 1. The factor f in (14) 
h@ - U + U ) h @  + U  - U) 

h(fV 
f(R, 0") = 

Proof. (37) is taken from [211. Then (38) follows from the definition of the fused R-matrix. 
0 

Formula 2.  The factor g in (15) is given by 

Proof. 
on the difference of the spectral parameters. 

Note that we can write g(O., top,) = g(u - a) since the R-matrix depends only 
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Step I .  We shall examine the zeros of the function g. Recall the definition kouJ"P. = 
g(x)  x P (15) of the function g. We first observe that 

$".'OP" (1 E3 nt0pJ = 0 (41) 

if U - U = -h: In fact the left-hand side tums out ,'o be,fhe projector onto V(lnfl) N 

An+'(@?) = 0. Next, from (14) and (37) we have R(x)R( -x )  = 0 for x = ffi. Then 
some braid manipulation shows that (41) also holds for U - U = h,  2fr, . . . , (n - 1)h. 

k O " J ~ " ( 1  E3 Rtop")l"-"=kfr 

u = v + k f r  ~~ . u . . . V + ( k - l ) f i  U + k h . . . u + ( n - l ) f i  

= O  (1 < k < n - 1). 

Together with the periodicity of R, we conclude that 

x = -h; h ,  Z, . . . , (n - 1)E modZ + TZ 
gives rise to the zeroes of g. 
Step 2.  The transformation rule of g(x)  in x is easily deduced from that of R (1) and 
definition (15). We have 

s(x + 1) =g(x)(--l)" 

g(x+t) =g(x)(-l)"exp2Ri[-n(~t+n)+(~n(n-1)-1)tt]. 

Step 3. From steps 1, 2 and (6), a standard arguement in complex analysis shows that 

where C does not depend on x .  
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Step 4. To show C = h(R)-", we shall investigate the transformation rules of g(x)  = gh(x )  
in R. For that purpose'we will consider the transformation rule of R = Rh(u) in R. To do 
this, we ObSeNe the symmetrical roles of U and R in the Richey-Tracy formula (Z), that is 
we have 

where 

Put &(U) := h(R)%(u). Then the above observation and (1) implies the following. 

%+1(u) = (g €3 l)-'&i(u)(l@ g) x (-1) 

ih+r(u) = (h €3 l ) i&,(u)(~ ah)-' x (-expZrri @ + + z)) . U r -1 

We also remark here that, as a function in R, Rh is not holomorphic but &(U) is. It follows 
that & ( x )  := h@)"gh(x) is holomorphic in fi. 
Step 5. From the previous step we can analyse the transformation rule of ztOp = (j?& and 
do"+("-~~~~...o*,~ = (iO*(*-lW...O*.O.), and therefore that of &(x). in R. The result is 

I+n(n-l)/Z 

1+n(n-1)/2 

&+lW = i&)(-l) 
i h + m  = &?h(x)(-1) 

exp - k i [ ( l -  in(. - 1))x + (1 + +z(n - I)(& - +&)I. 
On the other hand, (42) gives that 

R = -x modZ + rZ 
X + S + t Z  

k 
- - modZ+rZ (0 < s, t < k - 1.1 4 k 4 n - 1) 

giving zeros of & in R. Then again some complex analysis shows that these properties 
determine the form of 2: & ( x )  = Eh(x +%)fly:; h(x - jR), or 

with 
Step 7. Now we consider the limit of 6 + 0 to determine e: We have & ( x )  -+ h(x) . id, 
which implies & ( x )  + h(x)". Therefore 

0 

Formula 3. With the appropriate choice of basis ItopA,+) E Pimpu and ]top,) E V(top,), 
we have 

being a constant in h. The conclusion in step 2 implies is also a constant in x .  

= 1 and this completes the proof of (39). 
Formula (40) follows from the definition of the fused R-matrix. 

where hk,, = (h + p ,  zk - zj) and q(r) := exp &2xi rnz=l ( l  - expzrrimr) denotes the 
Dedekind eta function. 
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of the special value of the face weight which appears as a factor of the fusion operator n1m 
is of the 

form 
(20). For the c&e m = n it follows that 'any element in etopv c PAng+n-,)c,..n& A 

up to a scalar factor, where S, stands for the symmetric group. To choose the basis 
Itop,,,) E 'P;tqu we shall fix the scalar to be 1 for all A and U: Itop,,,) := (44). Similarly 
we t&e 

as the basis of V(top,). We have (el @ . . . @ e.Itop,) = 1, where ej E V(O)* is the dual 
basis for [ej} c V(0): (ejle') = Sj,'. Using the standard bracket notation we have 

and now the result follows. 0 

From the formula in this section and the relations in corollaries 1 and 3 and lemma 1, 
we can calculate the factors in the crossing symmetry in the vertex case (16), (17) as well 
as in the face case (23), (24). For example, we can write down the factor in (16) as follows 
~71 ,  

Note added in prooj? The author was introduced to the preprints [28.29] after this work had been done, and 
also [27J during the revision. In [28] and P91 the inwming intertwining vectors for the vector representation 
@,"" in this paper) is obtained by solving the duality relations (33) and (34) directly and a generalization of the 
Kashiwara-Miwa solution was studied. In 1291, the crossing fador (16) and (45) was determined in a slightly 
different way from ours in the appendix. We used the transformation rule with respect to the paramekr h and this 
is a basis-free arguement, while 1271 uses a special matrix element. 
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