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Abstract. Some algebraic structures in elliptic solutions of the Yang-Baxter equatlons are
" investigated. We prove the crossing symmetry in Belavin’s model as well as_in the A -, face
model, and we construct 2 new family of L-operators for Belavin’s R-matrix as an apphcqtlon

1. Introduction

Recently much progress has been made in the theory of twp-dimensional solvable statistical
lattice models. Here we shall investigate some algebraic structures in elliptic solutions of
the Yang-Baxter equations (YBE) ‘In particular, we demonstrate the crossing symmetry in
Belavin’s model [1] as well as in Jimbo ef al AU , face model [2], and we construct a new
family of L-operators for Belavin’s model as an apphcanon

Bazhanov and Stroganov [3] showed that the chiral Potts model, which is a solution of
the YBE or the star-triangle relation whose spectral parameter lies in a high genus algebraic
curve {4,5], is 2 ‘descendent’ of the 6-vertex model which is nothing but the R-matrix
associated to U, (sl ). That is, they derived the chiral Potts model as the intertwiner of cyclic
L-operators or, equwalently, the intertwiner of the two-fold tensor of cyclic representations
of U (sl,,) Motivated by their result,-in our previous paper [6] we showed that Kashiwara—
lea s elliptic solution (the so-called broken Zy symmetric solution [7]) is a descendent
of Baxter’s 8-vertex model [8], i.e. if we take Sklyanin’s cyclic L-operator for the 8-vertex
model we obtain Kashiwara-Miwa’s model as the intertwiner for the L-operators. Together
with this derivation, in [9] we further succeeded in relating the crossing symmetry of
Kashiwara-Miwa’s model with a certain duality property of the L-operators.

To generalize this story for the n-state elliptic model of Belavin, one immediately needs
a cyclic L-operator for the model and its construction is one of our objectives here. We are
inspired by an idea in Bazhanov ez af [10]. They considered the U, (sln) generalization in
[3] by means of “intertwining vectors’ or “factorized L-operators [11]’ Intertwining vectors
were originally introduced in [12] to introduce face models via vertex models. Hence by
definition they relate a vertex model and a certain face model, and using this relationship
[10] observed that a simple combination of mtertwmmg vectors provides an L—operator
Intertwining vectors between Belavin’s model and the AL -1 face model are given in [13]
and they are, so to speak, ‘outgoing’ intertwining vectors. What we need to construct L-
operators are their ‘dual” or *incoming’ intertwining vectors and our method for constructing
them is as follows. We first observe the crossing symmetry of the models, which is nothing
but the incomingfoutgoing duality (sections 3 and 4), and then we obtain the incoming

intertwining vectors by fusing [2, 14, 15] the original intertwining vectors (section 5). The
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resulting L-operators (section 6) act on C* @ (space of functions on the weight space A* of
slp), and of letting the deformation parameter g = ¢* of Belavin’s model be a root of unity
invariant subspaces arise and we can obtain the desired cyclic L-operators. In addition to
. this cyclic one we can also find other invariant subspaces [16] so that we can generalize
the analogue of Sklyanin’s series of L-operators [17] for Baxter's 8-vertex model to the
Belavin model.

As is well known, up to a certain transformatlon the tngonomelrlc limit of Belavm §
model gives the R-matrix of U, (sln) in the vector representation [18]. What we have
observed here should be regarded as part of the theory of the ‘elliptic’ version of quantum
groups [14, 19,20} and we have formulated the model keeping this in mind. We hope that
this paper will give some insight into the nature of the theory.

2. Review

- 2.1, Belavin’s vertex model {1]

For n > 1 let C" = ®icZmodnzCe* and let g, 1 € GL(C™) to be ge* := &* exp2mik/n,
he® .= ¢**1 5o that gh = hgexp2mi/n. Leth, 7 € C,% # 0,Im7 > 0. Belavin’s R-matrix
is cha:acterized as the unique solution of the following five conditions.
(1) R(u) is a holomorphic End(C" @ C*)-valued function in u
() R@)=(x @ x)R)(x @ x)~! forx=gh .
() R+ 1) =@ 'R ® 1) x (—1) [¢8)
V) Ru+)=E@DRW)G*R® - x (—exp2mi(u + (B/n) + —1.'))‘
MRO=P:x@y> y®x.
We also have the following formula for R(x) [211:

Rwe @ =3 & @/ RU)Y;
¥,
89 -Nw+n) Tl 8®w) -
O (mBE(w) TT=) o 0y

- (2)

i
R(u) E{j' = 8ipj it j modn

Here

u?
O, v) == Z exp2mi (p,u-!- 2 )

pémtiZ
and
8D (w) = B1yojym1(u + §, no).
Then the YBE of the vertex type
Rz — ) Rs ~ 49 R0 — 1) = Ry — u) R ~ w9 B =) 3
holds on V; @ Vo ® Vi, where V; are copies of C* and RV acts on ith and jth spaces.

For the latter purpose we will reformulate this solution as follows. For each u = C let
V{3,) be the copy of C* and write the R-matrix R(x — v) acting on V(0,) ® V(O,} as
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RO=T: We also put R+™ ;= PRD«=D where P is the permutation V(EI,,) ® VO, —
v({O,) ® V({O,). Then YBE (3) reads as follows

(R’D,_..EI.,, @D ﬁDu.Dw)(ﬁD...Uu ® 1) = e R"D...Du)(l ® ﬁﬁa.ﬂw)(ﬁﬂmﬂm @1 7
V(O @ V(0@ V() - V(O,) @ V(0 @ V(4. 4

Remark 1. The notation O stands for the Young diagram consisting of one box. If we
consider the ‘algebra of L-operators’ for Belavin’s R-matrix then the notation [J, can be
justified as its *vector representation with the spectral parameter u’.

2.2. ALY, face model [13]

Let €;(i = 1,...,n) be the orthonomal basis of an n-dimensional vector space with the
inner product (,) and put h* := C-Span of {¢; — €41 = 1,...,n — 1)} 50 that we can
identify k* and the weight space of the complex Lie algebra sl,, in a usual wa Let
": C" — h* be the orthogonal projection. Then the Boltzmann weight of the A% a1 face
model corresponding to the vector representation O is given by the following.

T A+E
#[n 0 ] 2R
NP @

L Até 1 —g B
WiA u' AtE+¢ =_____h(h“h: i)
B K-l—ébf ) R ( zj)

L[ AtE 1 k() kG +BAy)
Wik o AG+g|ms o0
L ate |7 w@ heny)

and, for the other configuration of A, u, &’ and v,

v
Wiit u v)|:=0
I-"’

where A;j := (A + p, & — §), p 1= 21—, (n — j)¥; is the half sum of positive roots and

h(u) 1 =61 (u+ 1, 7)

- b8, 172 -1/2; o m mn -1 _m (S)
=ig" (" —z )H(l—q 1 —zg™{(1 —z7g™)
T om=l
where g ;= explzrir, z := exp2xin. The function & satisfies.
hu+1)=—h@)  k(x+1) = —h(@) exp2ri[—u — t/2] T (6

and A(u) =0foru e Z 4 tZ.

To formulate the weight W as a linear operator or a ‘face operator {an elemcntary
transfer matrix)’, the following vector space is in order.

’P [(C p=ri+é for soine i
0: otherwise.
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We denote by ef the basis of the one-dimensional space P when g = A + € for some

i, and otherwise we set ei = 0. For each 1 ¢ C we consider the copy P‘{"D" of Pl and
define

Z: lmnz ®P;k— "k 1

g eens fli-d

Po,,-q,, = @,\.,upfuq...u,k .
This is the space of ‘admissible paths’ in [2]. For ¢} € Pjy and e}, € Py we put
WD (e @ ¢%) = ng’ ® e;,ﬁ/ {JL u ﬁ v v]
® 74
thereby defining the face operator
WB : Pop, — Pag, Pioa, —~ Paaa.-

With these definitions the YBE of face type reads as follows. As operators Pﬁuuu,,[:l.,, —

A
pun.,l:i"n,, we have

(1@ WhBy (WD @ 1)(1 @ WDe) = (WD @ 1)(1 @ WHDo)(W D @ 1).

Q)
2.3, Intertwining vectors {13]
Put
eff)(u —nh(A o, &) —A=¢6 for some &
($ro)s = )
otherwise
and define the linear map
¢;_c| ﬂ' L V(O
by
el =D/ Win)
i
Then the ¢l ‘intertwine’ Belavin’s vertex model and the AD | face model, namely
500,00, g X W ,u,
B v¢m" BD" E¢u’ﬂ ® A u—,v v]. (8)
1

This formula is remarkable because of its similarity to the monodoromy property of the
n-point function in the g-conformal field theory [22] and between Pasquire’s formulation
of the face models [23].

The quantity {(t;bmu )jti= regarded as an n-vector is called the infertwining vector.
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3. Crossing symmetry in the vertex models

3.1. Fusion procedure [14]
Let
R0 80,0805, 0, . ( ROe00ey 12 300 00y23 | ( f Oyl

: VtDul) @ - @V(,)QVI) = VO) @ V() ®--- @ V(L)
I‘énx[ ®"'@Duk -Du] @'“@Dw .

= (RDu & ®0u Oy Yook H-LkH

3 (R 880y )2k L2 ( Ty 88Ty Do y Lkt

V)@ - 0VO) V(@)@ -’ V()

> V) ®---8V({y)® V(Ok) @@ V(Oy,).

Fork = 1,..., n-let 1* be the Young diagram of vertical k boxes (1! = [J; in this paper
we will treat these special diagrams for S1mp11c1ty) Then the fusion operator by Cherednik
[14] associated with 1% is given by

ap  V(O) @ - @ V(O g—nr) = V(Owtge—) ®--- @ V(O,)
:“__,(éﬂ,,l,l:‘uz)k—l;k ... (éal‘l @0, @--&0y,_y O, )2---k—1;k

X (éDal @0, @ @,,_,.0x, )l---k—l;k (9)
where the spectral parameters are specialized as
g, .. up) =@ u+h, ..., u+&—14) (10)

so that the rank of the operator & degenerates. By virtue of YBE (5) the factors in (9) can
be arranged in various ways by ‘braid manipulation” and this is the key remark in deriving
the formula in what follows. We denote the image of my in V(Qypg—ns) @ -+ ® V(O
as V(1% and then it turns out that V(1) = A*(C") for the generic value of 7. Put

KL a0 R -1y ®--Q0,
REL =" pOus 10 ® 80 Oyt g1 p @@ v eV

V{rhere
K =1k L=1,

is the shorthand notation. Then the YBE for R°+™ (5) guarantees that this ‘fused’ operator
preserves the image of =

REL.vEY® VI) = VL) @ VK)
as well as the YBE: for K = 1;’3,L= 1},M =17 we have

(B @ (1@ REMY(REE @ 1) = (1 @ REH(RMY @ (1 @ REY)
VE)RVILY@ VM) —~ VM) @ VL) ® VK). (11



3216 K Hasegawa

3.2. Crossing symmetry
Let us denote the special diagram 1" as top and put

(%) = By (12)

Then since Tiop = REK" (g @ 7y») for each K = 1%, we can define a pairing
() VE)Y® V(K™) - V(top,) — C (13

as the composition of RXX" and the identification map [top,) > 1, where |top,} is a fixed
basis of the one-dimensional space V (top,).

For generic 7 this pairing turns out to be non-degenarate so that we can and do identify
V(KY* and V(K*), where V(X)* stands for the dual space of V(K). Fix K = 1% and
L = 1. We take a basis {¢/}; in V(K) and its dual basis (with respect to {,}) {el}; in
V(K*), and do the same for L. We define the matrix elements of R by

RELl el =% ol @' (RN, (¢’ e VIK), e’ € V(L))
I’,Jl a
BVl el = el @ (REF)), (' € V(K), el e V(LY)
i
ete.
Proposition I. Let K = 1%, L = 1} and top = 1”. Then under notation (12) we have the

following.
(i) There is a scalar f(K,L) which is non-zero for generic u, v such that

REEREL = £(B, L) -idvayevm- (14)
(if) We have
RX'® = g(K,top,}- P K"P" = g(top,, L)+ P (15)

where P : V(K) ® V(top,} — V(top,) ® V(X) is the permutation of the components and
g(K,top,), g(top,, L) are scalars which are non-zero for generic «, v.
(iii) The following crossing symmetry holds:

sKLa17 _ o pLiegr K, L)
B = R o) (16)
= (I‘éL,K‘)J!' g(topw L) (17)

T TN

Proof. (i) follows from the first inversion formula RO R040s = scalar for Belavin's
original R-matrix. To show (i), note that the operator mx commutes with the k-fold tensor
preduct representation of the Heisenberg group (g, £} (1). Since dim V(top,) = 1, the
representation resiricted on V(top,) is only by scalar multiplication. Together with the
characterization (1) of RD«Dh, this implies that (1 @ x)RF*Pr(x~1 @ 1) = RE* for
x &€ {g, h} as desired. The fact that g(K, top,} # O follows in generic from the explicit
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calculation (appendix). To prove (iii), we use (i) and an elementary braid manipulation to
get

REPe (1, @ m)(REE @ 1x) = (g ® REKYREK" @ 1x)(1, @ REK)(BEL @ 14
=(x ® 1.){1x ® R-X"). f(K,L)
VK)® V(L) ®@ VK*) — Vitop,) ® V(L)

where 7 = REK* . V(K)®V(K*) —s V(top,). Rewriting this in terms of matrix elements
we obtain (16). Slmﬂarly we get (17) from the identity

Bop., Lr @1p(x ® RLEYy = (1L®n')(RKL® IK‘) f(L K",

Corollary I. Comparing (16) and (17), we have

F&, L) _ gltop,, L)
gL ,top,)  fULK¥)

Corollary 2. Using (16) twice, we have

i L A 4 :L) :f(L’ K*)
FIENTINNE T N N A .
REDV7r = RO 2 7 opy 2K ™, 10py)

Remark 2. For K = 1% write K* = 1;_‘;’(} e ‘We can also define a pairing by using
BKY K

()Y 1 VE*) ® VK) = V{toPyygns) = C (19)

which is also non-degenarate for generic % so that we can identify V(K)* and V(K*).

4. Crossing symmetry in the face models
As in the vertex case we can similarly derive the crossing symmetry for face models. Put

WD“IDNZ'"DW 0, o (anl.DU)I,Z(WDuz,UU)2,3 . (WD:,‘,DV)L[-I—I
WD"J Oy Ly Oy = (WD"I l-r)kmk-l-l—l:k-I-I

.. (Wl:lnl "'D"k ,Duz )2-v-k+1,k'§'2 (WDHI "'Du‘: ;D”l )I‘"k:k-!'l -
: Pa,, -0, ® Pg, g, = Pa,.-o, ®Po,-0,

where the superscripts denote the components they act on. The fusion operator for the face
model [2] associated with 1% is given by

Thye s (W Oea YLk L (O Dugg Doy )2k =Tk (D Doy Oy T y 1k

: PDa"'Du+(k-1)n - PDH+(k—E)ﬁ"'Da . (20)
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where the speciral parameters are specialized as before (10): (up, ..., ) = @, ..., u+
(k — 1)R). We denote the image of Iy in ’Pgu_m_m -g, (respectively Pl o o) 2 Pu
(respectively 'P"l,‘) or Py (respectively P} ) using the shorthand from the previous section
K = 1% We also write Pyyy 1= @, Py ® Ply, Prr i= @0, Pfyg. It turns out that for
K = lﬁ and generic value of % the dimension of the space P}y is given by

dimPly = (1, - . B IS i< < Sn &+t =v—2}

which is equal to the multiplicity of the weight v — A of the GL(C")-module A¥(C"). In
particular, for top = 1" we have dim P},
The fused weight for K = 15, L = 1! is defined by

= g3 0.

WKL .= WO Duluane oo 2 Ppy > Pry
and they satisfy
(W @ (1@ WHM)(WEE @ 1) = (1 @ WEHFEM @ (1 @ WHM). @n
Fix a base [top,,) € Py, for each A and 1. We can define the pairing
(): Pk ®@Pg» = Piop, > C (22)

as the composition of WXX™ and the identification map ltop, ,} +> 1. Suppose Pl # 0.
Then for generic 7 this pairing is non-degenarate between Py and Plg. so that we can
identify (P)* and P2... Take basis {e},},; of Pfx and its dual basis (with respect to {, })

e;ﬁ }e of P2 x> and define the matrix element of W as follows.

a p b
WK'L(eiLa ® e;b) = Z gw Qe T WKL [b’ ) v’:l (8;; [ Pvaerab £ P;L)
bua noa

Proposition 2. Let K, L are as in proposition 1 and let f(K, L) be the scalar in (14).
(i) We have

WEEWEL = f(E,L)-id.

(ii) For each A and p there exists a scalar G% (K, top,) (respectively G (top,,, L)) which
is non-zero for generic u, v and satisfies

WK (h @ Jtop, ,)) = ltop, ,) ® & - G4 (K, top,)
(respectively W*P+L ([top, ,) ® b) = b ® |top,, )G (top,, L))

for any b € Pl (respectively Piy).
(iti) The crossing symmetry is given by

a u b b v
ﬁ’;K,L A v | = WL.K' m MI M 7 (23)
T a i ¥ Gu {L, top,}
b v a
vy g GY (top ,L)
=WL'K A ] 24
P 2’?} F K o
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Proof. Proof of (i) is similar to the vertex case. (ii) is trivial when k£ = 1 because the
space Pj is, at most, one-dimensional, and then the general case follows. The fact that
G{ (R, top,) # O for generic u — v follows from calculation (lemma 1 and the appendix).
To prove (iii), as in the vertex case we use (i) and an elementary braid manipulation to
obtain

WEhee(1 @ M(WEL @ 1) = (M@ (1 ® WHE') - f(K, L)
: Pk @ PL® Pr« —> Puop, @ PL

Here IT = WX-X*, Rewriting this in terms of matrix elements we obtain (23). Similarly we
get (24), '

Coroilary 3. . .
fK,L)  Giltop, L)
GiL,top,)  fU.K®
Corollary 4.
CoTaow b d oY ' .
WL A u]:W""‘-'I:v A] g(K’L) Gf%;K) . (25)
bl u'.f a-" b i a Gl (L, topu) !1,( ) topu)

Remark 3. As in the vertex case we can define a non-degenerate pairing

() i Plw ®Pix > Phiogian = C | 26)

by using WYX where K* is the same as before (19).

5. The incoming intertwining vectors

" Fusion of the intertwining vector was treated in [15] with the generalization of the vertex-
face correspondence (8). Here we will review them in our formalism so that we can
observe the algebraic struture directly. Let K = 1%, L = 11, top = 1" as before. Consider
the operator
¢IEIH[EZI,,2---DW‘ EBM f2n m_;‘f’m"l ® 45,;,::,,2 ®---® ‘f’,'i,‘_,D,k
'PJLEI.,]C![.Z---D“ = Ga#lvﬁ?"‘vﬂk-'l Pfélul ® p,uqﬂ @ P::g_;ljuk

—> V(Duj) ® V(Duz) ® e @ V(Dug)

then from the intertwining property (8) we have

. v 4y
U N N N T . B R $L2

This implies that the image of the restriction @7y = ¢y lpy, lies in V(K):

e Tapaly

drx 2 Pax = VIK). o - @n
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This is the fused ‘ifitertwining vector. Let
Pk @ PL @y > PROP .

l,uuv
denotes the projection and put

. # . .
wk.L {:A , v] = Prym, - K""[Pﬂ@% : Prk ® P = PiL ® Pux.
W

Then the generalized vertex—face correspondence or the intertwining property [15] can be

stated as follows
" , . C
REEgl @t = ol @ bl WEE [ 4 v |.
J.b’ u’!
Here both sides are the operators Piy @ P, — V(L) ® V(K).

5.1. The incoming intertwining vectors

(28)

The fused intertwining vectors (27) ma& be called outgoing intertwining vectors because
the space V(R') appears there as the output of these quantities. In contrast to this, what we

should like to call ‘incoming’ intertwining vectors are the quantities
5L vy - Pl
that satisfy

. . # ,
fL®¢ﬁKRK'L=ZWK'L[l v} Y Qo
I3 W

and we are now in the position to construct them.
First we substitnte k by n —k and ! by n — [ in (28),

g o - L M
BE L ,u . ® ¢!.LL" quff.* ® ¢::,’K‘ WKL |:U }']
o w
and take the matrix elements: write

Bl(el) =Y e @lxdra € VK)
I

then we have

#lalbl !

- (3 hd nyw a !-L
E (R @l (i) i = D @l d i @hg ) ra WEE [u
¥ u

We use the crossing symmetries (18), (25) in corollaries 2, 4 to get

&1y 8, top,) g(K*, top,)
Y R D K

(¢fx-)1a (95:21,-)!!7

= 3 @Ol re@hx) ra WE

falbr

b 4 ool TED

'We need the following lemma.

[“ w i] GE(L, top,) G(K™, 10p,)

fL, K*)

(29)

(30)



L-operator for Belavin's elliptic model 3221

Lemmal. Let (¢} utop,) € € be the coefficient in the formula
¢pr.topv Itop,u.,v> = ‘ltova(ﬁﬁtop,,}

where [top, .} € P mp " (respectively ltop,) € V(top,)) denotes a fixed basis of the one-
dimensional space. Then- we have the formula

UK, t0p,) _ (Blhon,)
g, 10p,)  (Blup)

Proof. Recall the formula (28) for [ = n,

(3D

o, . H
RE9egly © ¢ﬁmpu = Z qi’pru ® ok L 1} r u} '
'ul

T

Since dim ’F‘Mop = 8y, the summand on the right-hand side is zero unless ' = A. Then
the lemma follows as we take the matrix elements of both sides with using proposition 2(ii).
O

Applying (31) to (30) we have
Z(R" LY (G 1a(@la) b

a # VY gEE, top,) GA(K*, top,)
— Z (¢f;!)]’b’(¢ﬁ-’j{z)l’a’wv,x’lf A v A_( » tOPu) W ] p‘U
wab b noa g(L, topu) g(K*, topv)
. ’ oy - .
= Z (¢M£t)f’y(¢lfxt)[fafﬁfx'f‘ {i g v ] —'{¢£t°p") —(¢Atup,> .
,L(."a'.b' v © b ﬂ,b (¢i[0pﬂ} (¢:t't0p”)

Dividing both sides by (@/icp, ) (hiop,) We get

) . r g
KL PJ ((bfk*)!a (qbi:j',')fb ((va-)J’lb' (¢ ’K')I’a’ KL a K b
Z(R Ry ) Z W A v.
(¢',u.top,,} (¢J.top‘,) Wy 'mp ! (¢).mpn) b p a
Thus we obtained the desired incoming intertwining vectors (29).
Theorem I. Foreach A,vand K = lﬁ define the operator
K VRY - Piy

by

vK Iy v (qﬁ;}!{*)!a
BEE =D e gt

for each basis element el € V(K), where K* := 1,75, (12). Then they satisfy
. W
M@ REL =3 "W 4 v [ef* @ erk
w 18

where both sides are the operators' VIKY® V(L) — P @ Puk-
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Remark. In the above definition (32) we used the dual basis for (V({¥K), V(K™)) with
respect to the pairing (13) as well as those for (P'fK,PﬁK.) with respect to (22). In
defining these pairings we fixed the basis elements in V' (top,) and 'P%topn respectively, but

it can be checked easily that the quantity (32) does not depend on the cheice of these basis.
O )

By construction, the incoming vectors above and the outgoing ones obey the following
duality relations [10].

Proposition 3. Assume that Pl # 0. Then we have

2K Bl = Srvidpn, 1 Pl > V(K) > Pl (33)
D el dt™ =idv 1 V(K) = Pl — V(K). (34)
A

Proaf. From the definition of the fused intertwining vector and the generalized vertex—face
correspondence (28) we have

REK (@l ® ¢l gen) = Blop, WK 2 Pl @ Pligen — V(t0p,)-
Evaluating this identity with the dual basis we have

D @B ra @B i) 16 = 8y 1Ba s Bip,)-
I

Here the assumption Pl # O is necessary, otherwise both sides will be 0. Together with
the definition (32), this implies (33) and (34). a

Remark 5. To get the incoming intertwining vectors as above, we can take the pairings
{)' (19),(26) instead of () (13),(22) in the very beginning of the story. Then the
whole construction works in the same way, but the resulting intertwining vectors, say
¢, satisfy the duality relations (33),(34) in a slightly different form: ¢**¢, =
aﬁ-vidpi'x’ Zu ¢fK¢’fK = idv k). a
6. The L-operator
We define the vector space

V 1= T, cp C8* (35)
with 8#, the ‘delta function supported at i € h*”, as its basis.
Theorem 2. For each A, i € h* put

LK) = ¢l % - VIK) — Py » V(K)

for K = 1% and define the operator

LK) : VEIQV > Ve V(K)
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by
L) wes) =Y e LK) ®)
A
forany v € V(K) and ,u, eh*, Then this operator is well defined and satisfies the following.
CoenteLEkNEreh =1 R i) eDuelw)
where K =.1%, L = 1! and both sides are operators
VIEY@ VIRV V@ V(L) ® VE).

In particular, putting k = [ = 1 the ope_rator L(3,) gives an L-operator for Belavin's
R-matrix KOO, . :

" Proof. Remark that for each A, LK )i; = 0 for all but finite w, which imply that the

operator L(K ) is well defined.
Then by the intertwining properties (28) (29) we have the followmg for each A and v,

ZL(L)*‘@L(K) REL = Z(mqb b @ (@rxdlFIREE

= Z:(¢AL @ 42'5,,‘,:,:;)(:,,4,‘5L ® ¢2) BKL
m
.oy 74 N
B Zﬁﬂ@"’hzw’”‘[h u} “X g gk
. F 4 w
= Y @ @ )@ @ 41h)
!
= féK.L Z(‘ﬁ,{i’(ﬁ )® (¢V’L¢' )
7

= RELY LEYY @ L.

w
This identity of operators V(K) ® V(L) — V(L} ® V(K) implies the assertion. O
Remark 6. Recall the definition V(1¥) := Jl'Ik(V(Du) ® - @ V{Ogpm))s where V(D,,)
is just a copy of C* (section 3). This implies V(1% ) = V(I") Similarly P Mk = M,,

So identify these spaces and denote them as V(1%), Pflk respectively. Then we have the
operator

L(lm, 1DF = V(l") V(L) = Py S P = V(L) 2 V(H
and we can define L(1u+x, 15y by
LUk, Hese a“) = 23’" ® L(1%,,, 195(). - (36)

Adapting the above identification of spaces we can say that the operators R1%, 1} and W1
depend only on their deference 1 — v. Then we apply the above proof and get

(Elie L) ® DA @ LK, )R @ 1) = (1® REH)(1 ® LK, KLy, D @ 1)
whete K =¥ K, =18 L=1 L, =1 '
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6.1. Discussion

The L-operator given in this section defines a representation of the algebra of L-operators
[20] on V' (35). This is a large space but contains some series of sub/quotient representations.

First, let Th; be the comflex vector space spanned by theta functions of level { € Zyg on
the weight space k* and Th;" be its subspace consisting of the Weyl group (= the symmetric
group S,) invariants. The space Thf“ is spanned by the level I characters for the affine Lie
algebra Aff_)l [24]. Assume x == I in (36). Then we can restrict (the contragradient of)
our representation to the space Th;". This generalizes series (a) in Sklyanin’s work [17].
We conjecture that this representation is equivalent to the fused representation on degree !
symmetric tensors which was given by {14] and studied by [25]. Here equivalent means that
after a suitable choice of bases the matrix element of our L-operator and the corresponding
one for the fused L-operators are the same. When [ = 1 this equivalence can be proved by
examining the transformation rules like (1) of the matrix elements in the problem [16].

Second, letting % to be a rational number we get ‘cyclic’ representations as the quotient.
This generalizes the series (b) in [17], and suggests the generalization of Kashiwara-Miwa’s
solution of the star-triangle equation.

The author would like to report these important aspects of our L-operator efsewhere.
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Appendix. Some formulae

Here we will give the formula for three important factors appearing in this article.

Formula 1. The factor f in (14)
ha—u+vVhR+u—1v)

(0,0, = oL (37)
k—11-1
FE 1) =TT f Cusin, Do) (38)
=0 j=0 A
Proof. (37) is taken from [21]. Then (38) follows from the definition of the fused R-matrix.
O
Formula 2. The factor g in (15) is given by
h(u — v+ R [T A — v — ki)
O, top,) = : - 39
8( Py) R (39)
k=1
g(1%, top,} = [ | 2(Cussn, top,) (40)
i=0

Proof. Note that we can write g([J,, top,) = g(¢ — v) since the R-matrix depends only
on the difference of the spectral parameters.
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Step 1. 'We shall examine the zeros of the function g. Recall the definition ROwtoP, =
g(x) x P (15) of the function g. We first observe that

RD“,!OPV(:[ ®”tDP.,) = ‘ (41)
if #—v = —h: In fact the left-hand side tums out to be the projector onto v({rtly ~
ATy = 0. Next, from (14) and (37) we have R(x)R(—x)} = 0 for x = 3%. Then
some braid manipulation shows that (41) also holds foru —v=~5,2%,...,(r — 1)A.

‘f-\';[]..,wp,,(l ® Tiop, ) lw—v=rr

u=v+kh v---v+ G-V v+kh--v+(n—1h

=07 I<k€n—1}
Together with the periodicity of R, we conclude that
x=—-mh2...,(n—DimodZ+ 1%
gives rise to the zeroes of g. -

Step 2. The transformation rule of g(x} in x is easily deduced from that of R (1) and
definition (15). We have

g+ D) = g1y
g(x +1) = g(x)(=1)" exp2wi[—n(37 + x) + (n(n — 1) — DA].
Step 3. From steps 1, 2 and (6), a standard arguement in complex analysis shows that
‘ n—l ’ . -
g0) = C-hx+m [ [ x — jB)
i=1 .

where C does not depend on x.
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Step 4. To show C = h{h)~", we shall investigate the transformation rules of g(x) = gn{x)
in 7. For that purpose'we will consider the transformation rule of R = Ry(»} in 7. To do
this, we observe the symmetrical roles of # and 7 in the Richey—Tracy formula (2), that is
we have

Hw)
Ra()P = Ru(h) o
where
]._.[j 89(u) n(nz) 5
H{u) = = f —3",
@) o0 = Ol

Put & (u) = k() Rz (1t). Then the above observation and (1)} implies the following.
Rra@) =@ )" R@)(1®g) x (-1

Brsewy = (r @ DRI @M x (—exp2ri (1 + % + %)),1 :

We also remark here that, as a function in 7, Ry, is not holomorphic but R;(x) is. It follows
that 25 (x) := A(R)" gu(x) is holomorphic in #.
LS:’tep 5. From the prf:',’vious step we can analyse the transformation rule of 7y, = (Top)s and
ROvstretnD,Ba = ( ROw+n-2-Be:0y . and therefore that of Z;(x), in A. The result is
Bana(x) = B(x)(-1) T2
Brec(x) = B (x)(- 110702
exp —2xi[(1 — %n(n —Dx+ {1+ %n(n - D2rn—10NGR+ %r)].
On the other hand, (42} gives that

=—xmodZ 4 tZ
_x+s+1m
- k

giving zeros of gx in fi. Then again some complcx analysis shows that these properties
determine the form of g: & (x) = Chix +F) H iy ' n(x — jB), or

modZ -+ 7Z OLs,t€k—-1,15kgn-1_

s+ 11 hix — )

hR)*

en(x) =

with € being a constant in %. The conclusion in step 2 implies € is also a constant in x.

Step 7. Now we consider the limit of # — 0 to determine C: We have R, (x) = hix)-id,

which implies g (x) — A(x)". Therefore € =1 and this completes the proof of (39).
Formula (40) follows from the definition of the fused R-matrix. O

Formula 3. 'With the appropriate choice of basis |top, ,) € P,_mp and |top,} € V{top,),
we have

(Bhrop, ) = ()17 N2p(y — ( n—1

[T rrmre)) (43)

1 j<kgn

whexe A ; = (A + p, & — &) and n(7) :=exp 57 A 2mit [[50 (1 — exp2mimt) denotes the
Dedekind eta function.
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Progf. 'We recall the antisymmetry

. A+ & LI A+é ’

W[x —h k-}—e}-}-e'k]:—w[k ~h J»+e}+€k]
Atg o A+t €& ’

of the spéc:lal value of the face weight which appears as a factor of the fusion operator ITjn

(20). For the case m = n it follows that -any element in Pi‘mp C PO, i of the
form

AEuir) +fw([)+€w(2) A+Epityt+Eum
Z sgn(w)e; ®e €ty ®---Qe ErtEunyt o (44)
wes, E

up to a scalar factor, where S, stands for the symmetric group. To choose the basis

|top, .} € P Mop we shall fix the scalar to be 1 for all A and u: [top; ) = (44). Similarly
we tak_e -

top,) = E sgn(w)e*P @ .. @ '™ & V(Do) @+ @ V(L)

wes,

as the basis of V(top,). We have (e1 ® - -- ® exltop,) = 1, where ¢; € V([])* is the dual
basis for {e/} C V(O): (gj|e") = 8; 1. Using the standard bracket notation we have

MHEu Aty
E :sgn(w)ek @ - B € iz b tEugn!
wes, )
—_ A€y MbEuty e
= E Sgﬂ(“,')(‘ﬁmm,.um)l Tt (¢1+éum+---+éw(n-ulﬂu)”
wes,

= det{8 (u ~ (n — i — nR (A + p, Eu D]jk=t,n-

(qbimpu} = (31 ® e ® én ¢i|:|u+(n—ﬂk"'nu

The Weyl-Kac denominator formula for A(l’l reads as [24,26]"

detl0? (up))jp=t,n = h (%(ﬂ D+ uk) [ e —utn(eyyrt-me=nr

& 1L f<kgn
and now the result follows. o (|

From the formula in this section and the relations in corollaries 1 and 3 and lemma 1,
we can calculate the factors in the crossing symmetry in the vertex case (16), (17) as well
- as in the face case (23), (24). For exampie, we can write down the factor in (16) as follows
{27},

Fi="=5] _'ﬁ ~h(R)

g(0d,, topu) ] h(n — v +ERY (“43)

Note added in proof. The author was introduced to the preprints [28,29] after this work had been done, and
also [27] during the revision. In [28] and [29] the incoming intertwining vectors for the vector representation
(q&,. in this paper) is obtzined by solving the duality relations (33) and (34) directly and a generalization of the
Kashiwara-Miwa solution was studied. In [29], the crossing factor (16) and (45) was determined in a slightly
different way from ours in the appendix. We used the transformation rule with respect to the parameter 5 and this
is a basis-fiee arouement, while [27} uses a special matrix element,
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